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In the expansion of the hard sphere equation of state about close-packing, 
pV/NkT = 3/a + Co + Cla + .**, where 01 = V/V,, - 1, the first two pertur- 
bation terms C,, and C, have been evaluated by molecular dynamics averages for 
systems of hard dodecahedra in the fee and hcp configurations. The two lattices 
have identical values of C,, within the precision of the calculation, but the fee value 
of C, is lower than the hcp value by about 10 %. 

1. INTR~OUCTI~N 

In the summer of 1969 we were discussing different approaches to the high 
density expansion of the hard sphere equation of state when it became apparent 
that by means of molecular dynamics it would be very simple to evaluate accurately 
the rigorous expressions for the expansion coefficients which &vi Salsburg had 
recently formulated [ 11. These expansion coefficients had previously been obtained 
[2] only from the difference between the total value of pV/NkT and the known 
high density limiting value given by the free volume theory 3101, where 
01 = V/V,, - 1. This way of obtaining C, and C, in the expansion 

pV/NkT = 3/a + C,, + Cla + ‘-. (1) 

is relatively inaccurate in as much as C, and C, are obtained as the difference 
between two very large numbers, with the resultant loss of significant figures. 

* This work was performed under the auspices of the U. S. Atomic Energy Commission. 
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This difficulty is analogous to that encountered in obtaining higher virial coeffi- 
cients from computer data on the equation of state at low density as opposed to a 
direct evaluation of the theoretical expression for each virial coefficient. 

There are a number of reasons for wanting to have accurate C,, and C, values. 
The obvious one is to test various models that have been proposed for the high 
density solid equation of state. The need for very accurate values, however, arises 
principally from a desire to settle the problem of which of the two possible close- 
packed structures of hard spheres, namely face-centered cub& or hexagonal, is the 
more stable. By previous methods [2] no reliable difference between the equations 
of state of these two crystal structures could be detected. Although the high 
density equation of state by itself cannot resolve this problem (one needs the 
equation of state over the entire solid phase, so that by integration the free energy 
can be evaluated) it nevertheless is indicative of the difference to be expected. 

It was thus decided that in the summer of 1970 we would attack this problem as 
well as a number of related ones. One of these was the evaluation of the elastic 
constants in the high density limit. We were then going to evaluate the elastic 
constants, including their frequency dependence, in general for these very anhar- 
manic hard sphere crystals. Our intent was to investigate the difference in high 
frequency elastic behavior between a solid and a fluid. Zevi Salsburg was on his 
way to Livermore to start this investigation when he died. We have decided to carry 
out this program without his patiently given explanations, his sage counsel, his 
contagious enthusiasm, his clear thinking, his vast expertise. and above all his 
devotion to imaginative scientific investigations. 

2. THEORY 

The theory for the perturbation expansion will only be outlined here. The 
starting point is the partition function, written as the integral of a product of unit 
step functions H(rij - u), where His zero if the argument of H is less than 0 and H 
is 1 if the argument is greater than 0. The separation of particles i and j of diameter u 
is rij in general and “a” if i and j are nearest neighbors at their lattice positions. 
The argument of H can now be expanded near close-packing in terms of small 
displacements from the lattice sites, that is, in powers of (a - u)/u. The coefficients 
in this expansion contribute only when rij . wij = u, where wii is the unit vector 
joining the lattice sites belonging to particles i and j. In other words, a contribution 
to the expansion coefficients is obtained only when the projection of the vector 
joining the centers of the particles onto the axis joining their lattice sites is u. But 
that is precisely the condition under which dodecahedra would have collisions, if 
the faces of the dodecahedra are determined in the usual manner, as for example in 
the Wigner-Seitz cell theory, in which at close-packing, planes are drawn perpen- 
dicular to the lines joining lattice sites. 
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The physical argument for this happenstance rests on the observation that at 
close-packing the curvature of the spheres can be neglected. Thus, at close-packing 
the spheres can be considered as having flat sides, namely the faces of the 
dodecahedra. Away from close-packing the curvature must be taken into account 
but can be treated as small in the sense that the perturbation terms are evaluated 
as statistical mechanical averages over collisions of dodecahedra. Formally, this 
means that ensemble averages involving 6(r<j * wii - a) can be replaced by 
collision averages: 

S(rij . Wij - U) = pm j Yij / S(t - tc), (2) 

where p = l/kT = 3/ mz.8, u is the rms velocity, and vij is the change of velocity 
upon collision at t = t, , which, by the manner the dodecahedra have been 
determined, is necessarily in the direction of wii . 

The equation of state can be obtained by differentiation of the free energy with 
respect to volume, leading to 

c-,=2+ 2(a -L) Nu2 f il @,“2 - 0”) 2112 ? 

where t is the time elapsed in the sum over collisions. Similarly, 

N 
‘1 = -‘I9 + ‘Id3 + 4@ _ 42(NU2)2 

N 
+ 4(a - u)~(Nu~)~ 

(4) 
where R,, = (Y;~ - u”). The last term represents a fluctuation in the quantity 
calculated for C, for two different pairs of particles labeled 12 and 34, colliding 
a time s apart. This fluctuation has to be extrapolated to zero time between 
collisions, i.e., to s = 0. The second to last term in C, correlates pairs of colliding 
particles involving a common particle, and it also must be extrapolated to zero time 
between collisions. Higher coefficients C, would require evaluation of higher order 
fluctuation terms, which would be increasingly difficult to calculate. 

3. PROGRAMMING 

The system of dodecahedra is set up at an arbitrary density, but sufficiently 
high so that only nearest neighbors can collide. Furthermore, only those faces can 
have collisions that can touch at close-packing, and no rotation of the particles is 
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allowed. The initial configuration is either an fee or hcp lattice. In order to prevent 
number and shape dependent effects from interfering with accurate comparison 
between the two crystals, two systems of 6 x 6 x 6 = 216 particles with periodic 
boundary conditions are set up which differ only in the order of stacking of layers 
of dodecahedra. 

The molecular dynamics program for spheres can be somewhat simplified for 
this system by keeping track of the position of each particle relative to its own 
lattice position and by keeping a permanent table of the twelve nearest neighbor 
lattice sites relative to the central one. In the hcp case care must be taken to 
distinguish between two types of neighbor arrangements. This information is then 
used in the usual way to find the smallest time to the next collision. This involves 
only the solution of a linear instead of a quadratic algebraic equation. The change 
of velocity upon collision is also simpler than previously, involving only a simple 
exchange in the direction perpendicular to the colliding faces. The 216 particle 
program ran at 1 million collisions/hr on the CDC 6600. A 12 x 12 x 12 = 1728 
particle program on the CDC 7600 ran at 3 million collisions/hr. 

The coefficient C,, is a simple sum over all collisions, analogous to the virial 
average previously used to determine the pressure. The sum is accumulated as 
each collision occurs. This is also done for C, except that in addition averages 
over as many as 20 successive collisions between different pairs of particles are 
accumulated at a small number (10) of even time intervals apart. Even time 
intervals (about 0.01 mean collision times) are chosen in order to have an efficient 
scheme for placing the value of the time between successive collisions into its 
appropriate time location. The choice of the number of intervals as well as the size 
of the interval itself is made on the basis that a sufficient number of collisions 
occur in each interval to get good statistics and yet the interval is small enough so 
that a reliable extrapolation to zero time is possible. For the term involving 
successive collisions between pairs of particles of which one is a common particle 
only one successive collision was taken into account since the collisions occur on 
the average already one mean collision time apart. 

4. RESULTS 

A check on the accuracy of the calculation was made by comparing the pressure 
calculated by means of the virial theorem with that predicted by the self-consistent 
free volume theory [2]. Table I shows the comparison to be within the precision 
of the calculation. The accuracy in C, is only somewhat smaller than in the virial 
pressure, while C, is much less accurately determined. The reason for this is that 
the fluctuation term in C, is the difference of two large terms. An additional 
uncertainty is caused by a graphical extrapolation to zero time. 
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TABLE I 

Calculated values of PV/NkT from the molecular dynamics dodecahedron systems 
compared with the prediction of the self-consistent free volume theory at V/V,, = 1.05. 

Molecular Dynamics” 
Self-Consistent 

Free Volume Theory 

N 216 1728 

fee 61.9892 (3) 61.989 (1) 61.98916 

hcp 61.9892 (3) 61.989 (I) 61.98916 

a The numbers in parentheses are the uncertainties in the last digits of the preceding numbers. 

TABLE II 

Calculated values of C, from the molecular dynamics dodecahedron system compared 
with hard sphere molecular dynamics and the predictions of the cell cluster and Fixman theories 

Molecular Dynamics” C: 11 Cluster Fixman 

N 

fee 

hcp 

Dodecahedron Calculation Hard j ;, here 
_____-- ._~__ 

216 1728 500 

2.5649(4) 2.5658(4) 2.56(2) 2.442 2.55634 

2.5646(4) 2.5658(2) 2.56(2) 2.458 2.55634 

a The numbers in parentheses are the uncertainties in the last digits of the preceding numbers. 

TABLE III 

Calculated values of C, from the molecular dynamics dodecahedron systems 
compared with hard sphere molecular dynamics calculations 

Dodecahedron Calculation” Hard Sphere& 

fee 

hcp 

0.52(l) 0.56(8) 

0.57(l) 0.56(8) 

& The numbers in parentheses are the uncertainties in the last digits of the preceding numbers. 
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In Table II the values of C, computed by dodecahedron dynamics are compared 
to those previously obtained by hard sphere dynamics [2]. The computed values 
of C, are seen to increase slightly with increasing number of particles. There is no 
observable difference in the values of C,, for the two lattices. The two theoretical 
predictions [I, 41 are accurate but not exact. The accurate prediction of the 
Fixman theory [4] is possibly fortuitous since a higher approximation in this theory 
leads to a less accurate prediction, namely, C, = 2.40 + 0.04. 

The computer predictions for C, are given in Table III for the 216 particle system. 
The 1728 particle system was not run sufficiently long to yield reliable values for 
the fluctuation term. If in Eq. (4) the factor of N is removed from the term involving 
correlation of successive collisions with a common particle, the 216 particle value 
is larger than the 1728 particle value by a factor of 7.86 f 0.16 for fee and by a 
factor of 7.94 + 0.16 for hcp. If there were no intrinsic number dependence effects, 
this term should be 1728/216 = 8.0 times larger for the 216 particle system than 
for the 1728 particle system. The slightly lower values for the ratio indicate a 
slightly higher value of C, for the larger systems. 

The slightly higher pressure of the hard sphere hcp solid near close-packing is 
suggestive, but not conclusive proof, that the fee phase has the higher entropy and 
is therefore the more stable phase. If the difference in the pressure between the 
two phases is considered to be due to C, at high pressure up to a volume 
(V/V, = 1. l), where it exceeds the known bound and at larger volume the difference 
is taken to be the bound itself ((V ApjiVkT) = O.OOS), the expected entropy 
difference at close-packing would be (Sfcc - Shcp)/M = 0.002. The greater 
stability of the fee phase and an entropy difference of the same magnitude were 
suggested by earlier considerations [5]. 
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